lunes, 11 de mayo de 2015

TABLA PERIODICA

http://www.ptable.com/?lang=es  

http://definicion.de/tabla-periodica/

Introducción

 

La tabla periódica es un instrumento muy importante y familiar para nuestras vidas que forma parte del material didáctico para cualquier estudiante y estudiante de la química, medicina e ingeniería. En la tabla periódica se obtienen datos necesarios de algún elemento determinado, conoceremos la historia de la tabla periódica, de quienes fueron los químicos en construir la tabla periódica que hoy conocemos y cuáles fueron las primeras clasificación de los elementos, como el descubrimiento de los elementos de la tabla periódica y la noción de cada elemento y las propiedades periódicas ya que cada elemento tiene casi la misma propiedad química, pero no se utilizan para la misma tarea, también se explicara sobre que es un peso atómico y quien fue el descubridor de la misma, ya que cada elemento de la tabla periódica posee diferente peso atómico.
Ahora en nuestra actualidad la tabla periódica ya no posee la misma organización de elementos como antes, ahora ya se dividen en grupos las cuales son las columnas que observamos en alguna tabla periódica las cuales son 18 grupos y cada grupo le corresponde un nombre que caracteriza a todos los integrantes del mismo, como también están divididos en periodos las cuales son las filas que observamos en la tabla periódica y que son 7 periodos, pero sucede que el periodo 6 y 7 se une a la última tabla que se encuentra debajo de la otra tabla más grande la cual forma un total de 7 periodos y cada periódico se caracteriza que cada elemento está ordenado de forma que aquellos con propiedades químicas semejantes, se encuentren situados cerca uno de otro, pues conoceremos todo esta información adentrándonos a la lectura del siguiente tema la cual se detalló los más importante que encontraran en ello.

La Tabla Periódica

  • Historia de la tabla Periódica:
Los pioneros en crear una tabla periódica fueron los científicos Dimitri Mendeleiev y Julius Lothar Meyer, hacia el año 1869. Dimitri Mendeleiev fue un químico ruso que propuso una organización de la tabla periódica de los elementos, en la cual se agrupaban estos en filas y columnas según sus propiedades químicas; también Julius Lothar Meyer realizo un ordenamiento, pero basándose en las propiedades físicas de los átomos, más precisamente, los volúmenes atómicos
En 1829 el químico alemán Döbereiner realizo el primer intento de establecer una ordenación en los elementos químicos, haciendo notar en sus trabajos las similitudes entre los elementos cloro, bromo e iodo por un lado y la variación regular de sus propiedades por otro.
Una de las propiedades que parecía variar regularmente entre estos era el peso atómico. 
Desde 1850 hasta 1865 se descubrieron muchos elementos nuevos y se hicieron notables progresos en la determinación de las masas atómicas, además, se conocieron mejor otras propiedades de los mismos.
Fue en 1864 cuando estos intentos dieron su primer fruto importante, cuando Newlands estableció la ley de las octavas. Habiendo ordenado los elementos conocidos por su peso atómico y después de disponerlos en columnas verticales de siete elementos cada una, observó que en muchos casos coincidían en las filas horizontales elementos con propiedades similares y que presentaban una variación regular.
 
Esta ordenación, en columnas de siete da su nombre a la ley de las octavas, recordando los periodos musicales. En algunas de las filas horizontales coincidían los elementos cuyas similitudes ya había señalado Döbereiner. El fallo principal que tuvo Newlands fue el considerar que sus columnas verticales (que serían equivalentes a períodos en la tabla actual) debían tener siempre la misma longitud. Esto provocaba la coincidencia en algunas filas horizontales de elementos totalmente dispares y tuvo como consecuencia el que sus trabajos fueran desestimados.
En 1869 el químico alemán Julius Lothar Meyer y el químico ruso Dimitri Ivanovich Mendelyev propusieron la primera "Ley Periódica".
Meyer al estudiar los volúmenes atómicos de los elementos y representarlos frente al peso atómico observó la aparición en el gráfico de una serie de ondas. Cada bajada desde un máximo (que se correspondía con un metal alcalino) y subido hasta el siguiente, representaba para Meyer un periodo. En los primeros periodos, se cumplía la ley de las octavas, pero después se encontraban periodos mucho más largos.
Utilizando como criterio la valencia de los distintos elementos, además de su peso atómico, Mendelyev presentó su trabajo en forma de tabla en la que los periodos se rellenaban de acuerdo con las valencias (que aumentaban o disminuían de forma armónica dentro de los distintos periodos) de los elementos.
Esta ordenación daba de nuevo lugar a otros grupos de elementos en los que coincidían elementos de propiedades químicas similares y con una variación regular en sus propiedades físicas.
La tabla explicaba las observaciones de Döbereiner, cumplía la ley de las octavas en sus primeros periodos y coincidía con lo predicho en el gráfico de Meyer. Además, observando la existencia de huecos en su tabla, Mendelyev dedujo que debían existir elementos que aún no se habían descubierto y además adelanto las propiedades que debían tener estos elementos de acuerdo con la posición que debían ocupar en la tabla.
  • El descubrimiento de los elementos:
Hacia el siglo XVII los elementos químicos eran considerados cuerpos primitivos y simples que no estaban formados por otros cuerpos, ni unos de otros; y que eran ingredientes que componían inmediatamente todos los cuerpos mixtos.
Aunque algunos elementos como el oro (Au), plata (Ag), cobre (Cu), plomo (Pb) y el mercurio (Hg) ya eran conocidos desde la antigüedad, el primer descubrimiento científico de un elemento ocurrió en el siglo XVII cuando el alquimista Henning Brand descubrió el fósforo (P).
En el siglo XVIII se conocieron numerosos nuevos elementos, los más importantes de los cuales fueron los gases, con el desarrollo de la química neumáticaoxígeno (O), hidrógeno (H) y nitrógeno (N). También se consolidó en esos años la nueva concepción de elemento, que condujo a Antoine Lavoisier a escribir su famosa lista de sustancias simples, donde aparecían 33 elementos. A principios del siglo XIX, la aplicación de la pila eléctrica al estudio de fenómenos químicos condujo al descubrimiento de nuevos elementos, como los metales alcalinos y alcalino–térreos, sobre todo gracias a los trabajos de Humphry Davy.
En 1830 ya se conocían 55 elementos. Posteriormente, a mediados del siglo XIX, con la invención del espectroscopio, se descubrieron nuevos elementos, muchos de ellos nombrados por el color de sus líneas espectrales características: cesio (Cs, del latín caesius, azul), talio (Tl, de tallo, por su color verde), rubidio (Rb, rojo), etc.
  • Antes de 1800 (34 elementos): descubrimientos durante y antes del Siglo de las Luces.
  • 1800-1849 (+24 elementos): Revolución científica y Revolución industrial.
  • 1850-1899 (+26 elementos): el periodo de las clasificaciones de los elementos recibió el impulso del análisis de los espectros: Boisbaudran, Bunsen, Crookes, Kirchhoff, y otros "cazadores de trazas en las líneas de emisión de los espectros".
  • 1900-1949 (+13 elementos): impulso con la antigua teoría cuántica y la mecánica cuántica.
  • 1950-2000 (+17 elementos): descubrimientos "después de la bomba atómica": elementos de números atómicos 98 y posteriores (colisionadores, técnicas de bombardeo).
  • 2001-presente (+4 elementos): descubrimientos muy recientes, que no están confirmados.
  • La noción de elemento y las propiedades periódicas:
Lógicamente, un requisito previo necesario a la construcción de la tabla periódica era el descubrimiento de un número suficiente de elementos individuales, que hiciera posible encontrar alguna pauta en comportamiento químico y sus propiedades. Durante los siguientes dos siglos se fue adquiriendo un mayor conocimiento sobre estas propiedades, así como descubriendo muchos elementos nuevos.
La palabra "elemento" procede de la ciencia griega, pero su noción moderna apareció a lo largo del siglo XVII, aunque no existe un consenso claro respecto al proceso que condujo a su consolidación y uso generalizado. Algunos autores citan como precedente la frase de Robert Boyle en su famosa obra El químico escéptico, donde denomina elementos "ciertos cuerpos primitivos y simples que no están formados por otros cuerpos, ni unos de otros, y que son los ingredientes de que se componen inmediatamente y en que se resuelven en último término todos los cuerpos perfectamente mixtos". En realidad, esa frase aparece en el contexto de la crítica de Robert Boyle a los cuatro elementos aristotélicos.
A lo largo del siglo XVIII, las tablas de afinidad recogieron un nuevo modo de entender la composición química, que aparece claramente expuesto por Lavoisier en su obra Tratado elemental de química. Todo ello condujo a diferenciar en primer lugar qué sustancias de las conocidas hasta ese momento eran elementos químicos, cuáles eran sus propiedades y cómo aislarlas.
El descubrimiento de gran cantidad de elementos nuevos, así como el estudio de sus propiedades, pusieron de manifiesto algunas semejanzas entre ellos, lo que aumentó el interés de los químicos por buscar algún tipo de clasificación.
  • Los pesos atómicos:
El peso atómico (También llamado Masa Atómica Relativa) (símbolo: Ar) es una cantidad física adimensional definida como la suma de la cantidad de las masas promedio de los átomos de un elemento (de un origen dado) expresados en Unidad de masa atómica o U.M.A. (es decir, a 1/12 de la masa de un átomo de carbono 12).  El concepto se utiliza generalmente sin mayor calificación para referirse al peso atómico estándar.
Los valores de estos pesos atómicos estándar están reimpresos en una amplia variedad de libros de texto, catálogos comerciales, póster, etcétera. Para describir esta cantidad física se puede usar también la expresión masa atómica relativa. En consecuencia, desde por lo menos 1860 y hasta el decenio de 1960, el uso continuado de la locución ha atraído una controversia considerable.
A diferencia de las masas atómicas (las masas de los átomos individuales), los pesos atómicos no son constantes físicas. Varían de una muestra a otra. Sin embargo, en muestras normales son suficientemente constantes para ser de importancia fundamental en química. Se ha de no confundir al peso atómico con la masa atómica.
El peso atómico fue desarrollado por John Dalton en el siglo XIX, su aporte consistió en la formulación de un atomismo químico que integraba el elemento y las leyes ponderales. Este científico, tomo sustancias de su época y supuso como se combinaban los átomos de estas, tomo como referencia la masa de una átomo de hidrogeno y a partir de experiencias y suposiciones construyó la primera tabla de masas atómicas relativas. Esta tabla se perfecciono con el congreso de karlsruhe en 1860. Dalton empleó los conocimientos sobre proporciones en las que reaccionaban las sustancias de su época y realizó algunas suposiciones sobre el modo como se combinaban los átomos de las mismas.
Por ejemplo, en el caso del oxígeno, Dalton partió de la suposición de que el agua era un compuesto binario, formado por un átomo de hidrógeno y otro de oxígeno. No tenía ningún modo de comprobar este punto, por lo que tuvo que aceptar esta posibilidad como una hipótesis a priori.
Dalton sabía que 1 parte de hidrógeno se combinaba con 7 partes (8 afirmaríamos en la actualidad) de oxígeno para producir agua. Por lo tanto, si la combinación se producía átomo a átomo, es decir, un átomo de hidrógeno se combinaba con un átomo de oxígeno, la relación entre las masas de estos átomos debía ser 1:7 (o 1:8 se calcularía en la actualidad). El resultado fue la primera tabla de masas atómicas relativas (o pesos atómicos, como los llamaba Dalton) que fue posteriormente modificada y desarrollada en los años posteriores. Las inexactitudes antes mencionadas dieron lugar a toda una serie de polémicas y disparidades respecto a las fórmulas y los pesos atómicos, que solo comenzarían a superarse, aunque no totalmente, en el congreso de Karlsruhe en 1860.
  • Metales, no metales y metaloides o metales de transición:
La primera clasificación de elementos conocida, fue propuesta por Antoine Lavoisier, quien propuso que los elementos se clasificaran en metales, no metales y metaloides o metales de transición. Aunque muy práctico y todavía funcional en la tabla periódica moderna, fue rechazada debido a que había muchas diferencias tanto en las propiedades físicas como en las químicas.
Monografias.com
  • Antoine-Laurent de Lavoisier  químico, biólogo y economista francés, considerado el creador de la química moderna, junto a su esposa, la científica Marie-Anne Pierrette Paulze, por sus estudios sobre la oxidación de los cuerpos, el fenómeno de la respiración animal, el análisis del aire, la ley de conservación de la masa o ley Lomonósov-Lavoisier, la teoría calórica y la combustión.
  • Se llama metales a los elementos químicos caracterizados por ser buenos conductores del calor y la electricidad. Poseen alta densidad y son sólidos en temperaturas normales (excepto el mercurio); sus sales forman iones electropositivos (cationes) en disolución.
Monografias.com
Los metales los solemos clasificar de la siguiente forma:
  • Metales reactivos. Se denomina así a los elementos de las dos primeras columnas (alcalinos y alcalinotérreos) al ser los metales más reactivos por regla general.
  • Metales de transición. Son los elementos que se encuentran entre las columnas largas, tenemos los de transición interna (grupos cortos) y transición externa o tierras raras (lantánidos y actínidos).
  • Otros metales. Son los que se encuentran en el resto de grupos largos. Algunos de ellos tienen propiedades de no metal en determinadas circunstancias (semimetales o metaloides).
  • Propiedades de los metales.
Por regla general los metales tienen las siguientes propiedades:
  • Son buenos conductores de la electricidad.
  • Son buenos conductores del calor.
  • Son resistentes y duros.
  • Son brillantes cuando se frotan o al corte.
  • Son maleables, se convierten con facilidad en láminas muy finas.
  • Son dúctiles, se transforman con facilidad en hilos finos.
  • Se producen sonidos característicos (sonido metálico) cuando son golpeados.
  • Tienen altos puntos de fusión y de ebullición.
  • Poseen elevadas densidades; es decir, tienen mucha masa para su tamaño: tienen muchos átomos juntos en un pequeño volumen.
  • Algunos metales tienen propiedades magnéticas: son atraídos por los imanes.
  • Pueden formar aleaciones cuando se mezclan diferentes metales. Las aleaciones suman las propiedades de los metales que se combinan. Así, si un metal es ligero y frágil, mientras que el otro es pesado y resistente, la combinación de ambos podrías darnos una aleación ligera y resistente.
  • Tienen tendencia a formar iones positivos.
Hay algunas excepciones a las propiedades generales enunciadas anteriormente:
  • El mercurio es un metal pero es líquido a temperatura ambiente.
  • El sodio es metal pero es blando (se raya con facilidad) y flota (baja densidad)
  • Se denomina no metales, a los elementos químicos opuestos a los metales pues sus características son totalmente diferentes. Los no metales, excepto el hidrógeno, están situados en la tabla periódica de los elementos en el bloque p. Los elementos de este bloque son no-metales, excepto los metaloides (B, Si, Ge, As, Sb, Te), todos los gases nobles (He, Ne, Ar, Kr, Xe, Rn), y algunos metales (Al, Ga, In, Tl, Sn, Pb).
Tienden a formar aniones u oxianiones en solución acuosa. Su superficie es opaca, y son malos conductores de calor y electricidad. En comparación con los metales, son de baja densidad, y se derriten a bajas temperaturas. La forma de los no metales puede ser alterada fácilmente, ya que tienden a ser frágiles y quebradizos.
Monografias.com
  • Propiedades de los no metales:
  • Son malos conductores de la electricidad.
  • Son malos conductores del calor.
  • Son poco resistentes y se desgastan con facilidad.
  • No reflejan la luz como los metales, no tienen el denominado brillo metálico. Su superficie no es tan lisa como en los metales.
  • Son frágiles, se rompen con facilidad.
  • Tienen baja densidad.
  • No son atraídos por los imanes.
  • Tienen tendencia a formar iones negativos.
Hay algunas excepciones a las propiedades generales enunciadas anteriormente:
  • El diamante es un no metal pero presenta una gran dureza.
  • El grafito es un no metal pero conduce la electricidad.
  • Los elementos de transición son aquellos elementos químicos que están situados en la parte central del sistema periódico, en el bloque d, cuya principal característica es la inclusión en su configuración electrónica del orbital d, parcialmente lleno de electrones. Esta definición se puede ampliar considerando como elementos de transición a aquellos que poseen electrones alojados en el orbital d, esto incluiría a zinc, cadmio, y mercurio. La IUPAC define un metal de transición como "un elemento cuyo átomo tiene una subcapa d incompleta o que puede dar lugar a cationes".
Monografias.com
  • Los elementos que no se pueden clasificar como metales o como no metales; tienen propiedades de los dos grupos y se les llaman metaloides o semimetales. Estos son el boro (B) del grupo IIA, silicio (Si) del grupo IVA, germanio (Ge) del grupo IVA, arsénico (As) del grupo IVA, antimonio (Sb) del grupo VA y telurio (Te) del grupo VIA.
Monografias.com
Semimetales o metaloides.
Se encuentran entre lo metales y los no metales (B, Si, Ge, As, Sb, Te, Po). Son sólidos a temperatura ambiente y forman iones positivos con dificultad. Según las circunstancias tienen uno u otro comportamiento.

Clasificación

  • Grupos:
A las columnas verticales de la tabla periódica se les conoce como grupos. Hay 18 grupos en la tabla periódica estándar, de los cuales diez son grupos cortos y los ocho restantes largos, que muchos de estos grupos correspondan a conocidas familias de elementos químicos: la tabla periódica se ideó para ordenar estas familias de una forma coherente y fácil de ver.
Todos los elementos que pertenecen a un grupo tienen la misma valencia atómica, entendido como el número de electrones en la última capa, y por ello, tienen propiedades similares entre sí.
La explicación moderna del ordenamiento en la tabla periódica es que los elementos de un grupo poseen configuraciones electrónicas similares y la misma valencia atómica, o número de electrones en la última capa.
Dado que las propiedades químicas dependen profundamente de las interacciones de los electrones que están ubicados en los niveles más externos, los elementos de un mismo grupo tienen propiedades químicas similares.
Por ejemplo, los elementos en el grupo 1 tienen una configuración electrónica  y una valencia de 1 (un electrón externo) y todos tienden a perder ese electrón al enlazarse comoiones positivos de +1. Los elementos en el último grupo de la derecha son los gases nobles, los cuales tienen lleno su último nivel de energía (regla del octeto) y, por ello, son excepcionalmente no reactivos y son también llamados gases inertes.
Numerados de izquierda a derecha utilizando números arábigos, según la última recomendación de la IUPAC (según la antigua propuesta de la IUPAC) de 1988 y entre paréntesis según el sistema estadounidense,9 los grupos de la tabla periódica son:
Monografias.com
  • Grupo 1 (IA), Metales Alcalinos:
Los metales alcalinos son aquellos que se encuentran en el primer grupo dentro de la tabla periódica.
Con excepción del hidrógeno, son todos blancos, brillantes, muy activos, y se les encuentra combinados en forma de compuestos. Se les debe guardar en la atmósfera inerte o bajo aceite.
Los compuestos de los metales alcalinos son isomorfos, lo mismo que los compuestos salinos del amonio. Este radical presenta grandes analogías con los metales de este grupo.
Estos metales, cuyos átomos poseen un solo electrón en la capa externa, son monovalentes. Dada su estructura atómica, ceden fácilmente el electrón de valencia y pasan al estado iónico. Esto explica el carácter electropositivo que poseen, así como otras propiedades.
Los de mayor importancia son el sodio y el potasio, sus sales son empleadas industrialmente en gran escala.
  • Grupo 2 (IIA), Metales Alcalinotérreos:
Se conocen con el nombre de metales alcalinotérreos los seis elementos que forman el grupo IIA del sistema periódico: berilio, magnesio, calcio,  estroncio, bario y radio. Son bivalentes y se les llama alcalinotérreos a causa del aspecto térreo de sus óxidos.
El radio es un elemento radiactivo.
Estos elementos son muy activos aunque no tanto como los del grupo I. Son buenos conductores del calor y la electricidad, son blancos y brillantes.
Como el nombre indica, manifiestan propiedades intermedias entre los metales alcalinos y los térreos; el magnesio y, sobre todo, el berilio son los que más se asemejan a estos.
No existen en estado natural, por ser demasiado activos y, generalmente, se presentan formando silicatos, carbonatos, cloruros y sulfatos, generalmente insolubles.
Estos metales son difíciles de obtener, por lo que su empleo es muy restringido.
  • Grupo 3 (IIIB), familia del Escandio:
La familia del escandio se compone de todos los integrantes del Grupo 3 de la tabla periódica (antiguamente III B):
Escandio (Sc)
Itrio (Y)
Lantano (La)
Actinio (Ac)
Elementos de transición interna (Actínidos y Lantánidos o Tierras raras)Tendencia a oxidarse y ser muy reactivos. Propiedades similares al aluminio. Dan lugar a iones incoloros.
  • Grupo 4 (IVB), Familia del Titanio:
La familia del titanio se compone de todos los integrantes del Grupo 4 de la tabla periódica (antiguamente IV B):
Titanio (Ti)
Circonio (Zr)
Hafnio (Hf)
Rutherfordio (Rf)
Estos metales son bastante reactivos (sobre todo cuando están en forma de esponja porosa, de gran superficie específica, son pirofóricos; esto es, al exponerse a la acción del aire se vuelven rojos e inflaman espontáneamente). Al estar compactos son pasivos, casi inatacables por cualquier agente atmosférico.
  • Grupo 5 (VB), familia del Vanadio:
La familia del vanadio se compone de todos los integrantes del Grupo 5 y del 6 pasado por los metales consistentes de materia gris, estos se caracterizan por poseer calcio de estudios simontinosis aguda, y son el grupo 5,56 de la tabla periódica (antiguamente V B):
Vanadio (V)
Niobio (Nb)
Tantalo (Ta)
Dubnio (Db)
Todos los elementos de este grupo tienen comportamientos representativos del nombre que los representa, en este caso es el vanadio.
  • Grupo 6 (VIB), familia del Cromo:
La familia del cromo se compone de todos los integrantes del Grupo 6 de la tabla periódica (antiguamente VI B):
Cromo (Cr)
Molibdeno (Mo)
Volframio o Tungsteno (W)
Seaborgio (Sg)
Todos los elementos de este grupo tienen comportamientos representativos del nombre que los representa. En este caso es el cromo.
  • Grupo 7 (VIIB), familia del Manganeso:
La familia del manganeso se compone de todos los integrantes del Grupo 7 de la tabla periódica (antiguamente VII B): además se sitúa en el medio de los elementos de transición.
Manganeso (Mn)
Tecnecio (Tc)
Renio (Re)
Bohrio (Bh)
Todos los elementos de este grupo tienen comportamientos representativos del nombre que los representa. En este caso es el manganeso.
  • Grupo 8 (VIIIB), familia del Hierro:
La familia del hierro se compone de todos los integrantes del Grupo 8 de la tabla periódica (antiguamente VIII B):
Hierro (Fe)
Rutenio (Ru)
Osmio (Os)
Hassio (Hs)
Todos los elementos de este grupo tienen comportamientos físico-químicos representativos del nombre que los representa. En este caso es el hierro.
  • Grupo 9 (IXB), familia del Cobalto:
La familia del cobalto se compone de todos los integrantes del Grupo 9 de la tabla periódica (antiguamente IX B):
Cobalto (Co)
Rodio (Rh)
Iridio (Ir)
Meitnerio (Mt)
Todos los elementos de este grupo tienen comportamientos físico-químicos representativos del nombre que los representa. En este caso es el cobalto.
 
  • Grupo 10 (XB), familia del Níquel:
La familia del níquel se compone de todos los integrantes del Grupo 10 de la tabla periódica (antiguamente X B):
Níquel (Ni)
Paladio (Pd)
Platino (Pt)
Darmstadio (Ds) (anteriormente Ununnilio (Uun))
Todos los elementos de este grupo tienen comportamientos físico-químicos representativos del nombre que los representa. En este caso es el níquel.
  • Grupo 11 (IB), familia del Cobre:
La familia del cobre o vulgarmente conocidos como metales de acuñación se componen de todos los integrantes del Grupo 11 de la tabla periódica(antiguamente I B):
Cobre (Cu)
Plata (Ag)
Oro (Au)
Roentgenio (Rg) o Unununium (Uuu)
Todos los elementos de este grupo tienen comportamientos físico-químicos representativos del nombre que los representa. En este caso es el Cobre.
  • Grupo 12 (IIB), familia del Cinc:
La familia del Zinc se compone de todos los integrantes del Grupo 12 de la tabla periódica (antiguamente II B):
Zinc (Zn)
Cadmio (Cd)
Mercurio (Hg)
Copernicio (Cn) (anteriormente Ununbio (Uub))
Todos los elementos de este grupo tienen comportamientos físico-químicos representativos del nombre que los representa en este caso es el zinc.
  • Grupo 13 (IIIA), Los Térreos:
Los elementos que pertenecen al grupo III, llamados TÉRREOS, son el boro, aluminio, galio, indio y talio. Tienen 3 electrones en el último nivel, siendo su configuración electrónica externa ns2np1. El primero del grupo, el boro, es un metaloide que no forma compuestos iónicos binarios ni reacciona con el oxígeno o el agua.
El siguiente elemento, el aluminio, forma fácilmente óxidos al exponerse al aire, y la capa de óxido que se deposita lo hace menos reactivo que el aluminio elemental. El aluminio también reacciona con el ácido clorhídrico (HCl) desprendiendo hidrógeno. Los restantes elementos del grupo tienden a perder solo los electrones de los orbitales p (1) formando iones unipositivos.
Estos metales forman también compuestos moleculares lo que muestra la variación gradual dentro de la tabla desde el carácter metálico al no metálico.
  • Grupo 14 (IVA), Los Carbonoideos:
El grupo IV de la tabla periódica de los elementos (antiguo grupo IV A), también conocido como grupo del carbono o de los carbonoideos, está formado por los siguientes elementos: carbono (C), silicio (Si), germanio (Ge), estaño (Sn) y plomo (Pb).
La mayoría de los elementos de este grupo son muy conocidos y difundidos, especialmente el carbono, elemento fundamental de la química orgánica. A su vez, el silicio es uno de los elementos más abundantes en la corteza terrestre (28%), y de gran importancia en la sociedad a partir del siglo XXI, ya que es el elemento principal de los circuitos integrados.
Al bajar en el grupo, estos elementos van teniendo características cada vez más metálicas: el carbono es un no metal, el silicio y el germanio son semimetales, y el estaño y el plomo son metales.
 
  • Grupo 15 (VA), Los Nitrogenoideos:
El grupo del nitrógeno está compuesto por los elementos químicos del grupo 15 de la tabla periódica: nitrógeno (N), fósforo (P), arsénico (As), antimonio (Sb), bismuto (Bi) y el elemento sintético ununpentio (Uup), cuyo descubrimiento aún no ha sido confirmado. Estos elementos también reciben el nombre de pnicógenos nitrogenoideos.
  • Grupo 16 (VIA), los Calcógenos o Anfígenos:
Los cinco primeros elementos son no-metálicos, el último, polonio, es radioactivo. El oxígeno es un gas incoloro constituyente del aire. El agua y la tierra. El azufre es un sólido amarillo y sus compuestos por lo general son tóxicos o corrosivos. La química del teluro y selenio es compleja.
El grupo de los anfígenos calcógenos es también llamado familia del oxígeno y es el grupo conocido antiguamente como VIA, y actualmente grupo 16 (según la IUPAC) en la tabla periódica de los elementos, formado por los siguientes elementos: oxígeno (O), azufre (S), selenio (Se),telurio (Te) y polonio (Po).
Aunque todos ellos tienen seis electrones de valencia (última capa s2p4), sus propiedades varían de no metálicas a metálicas en cierto grado, conforme aumenta su número atómico.
El oxígeno y el azufre se utilizan abiertamente en la industria y el telurio y el selenio en la fabricación de semiconductores.
  • Grupo 17 (VIIA), Halógenos:
El flúor, el cloro, el bromo, el yodo y el astato, llamados metaloides halógenos, constituyen el grupo de los no metales monovalentes. Todos ellos son coloreados en estado gaseoso y, desde el punto de vista químico, presentan propiedades electronegativas muy acusadas, de donde se deriva la gran afinidad que tienen con el hidrógeno y los metales.
Los formadores de sal se encuentran combinados en la naturaleza por su gran actividad. Las sales de estos elementos con los de los grupos I y II están en los mares. Las propiedades de los halógenos son muy semejantes. La mayoría se sus compuestos derivados son tóxicos, irritantes, activos y tienen gran aplicación tanto en la industria como en el laboratorio.
El astatinio o ástato difiere un poco del resto del grupo.
  • Grupo 18 (VIIIA), Los Gases Nobles:
Los gases nobles son un grupo de elementos químicos con propiedades muy similares: bajo condiciones normales, son gases monoatómico sinodoros, incoloros y presentan una reactividad química muy baja. Se sitúan en el grupo 18 (8A) de la tabla periódica (anteriormente llamado grupo 0). Los seis gases nobles que se encuentran en la naturaleza son helio (He), neón (Ne), argón (Ar), kriptón (Kr), xenón (Xe) y el radiactivo radón (Rn).
Las propiedades de los gases nobles pueden ser explicadas por las teorías modernas de la estructura atómica: a su capa electrónica de electrones valentes se la considera completa, dándoles poca tendencia a participar en reacciones químicas, por lo que sólo unos pocos compuestos de gases nobles han sido preparados hasta 2008.
El neón, argón, kriptón y xenón se obtienen del aire usando los métodos de licuefacción y destilación fraccionada. El helio es típicamente separado del gas natural y el radón se aísla normalmente a partir del decaimiento radioactivo de compuestos disueltos del radio. Los gases nobles tienen muchas aplicaciones importantes en industrias como iluminación, soldadura y exploración espacial. La combinación helio-oxígeno-nitrógeno (trimix) se emplea para respirar en inmersiones de profundidad para evitar que los buzos sufran el efecto narcótico del nitrógeno. Después de verse los riesgos causados por la inflamabilidad del hidrógeno, éste fue reemplazado por helio en los dirigibles y globos aerostáticos.
 

Periodos

En la tabla periódica los elementos están ordenados de forma que aquellos con propiedades químicas semejantes, se encuentren situados cerca uno de otro.
Los elementos se distribuyen en filas horizontales, llamadas períodos. Pero los periodos no son todos iguales, sino que el número de elementos que contienen va cambiando, aumentando al bajar en la tabla periódica.
El primer periodo tiene sólo dos elementos, el segundo y tercer periodo tienen ocho elementos, el cuarto y quinto periodos tienen dieciocho, el sexto periodo tiene treinta y dos elementos, y el séptimo no tiene los treinta y dos elementos porque está incompleto. Estos dos últimos periodos tienen catorce elementos separados, para no alargar demasiado la tabla y facilitar su trabajo con ella.
El periodo que ocupa un elemento coincide con su última capa electrónica. Es decir, un elemento con cinco capas electrónicas, estará en el quinto periodo. El hierro, por ejemplo, pertenece al cuarto periodo, ya que tiene cuatro capas electrónicas.
 
Monografias.com

EL ATOMO



 EL ATOMO
Átomo, la unidad más pequeña posible de un elemento químico. En la filosofía de la antigua Grecia, la palabra "átomo" se empleaba para referirse a la parte de materia más pequeño que podía concebirse. Esa "partícula fundamental", por emplear el término moderno para ese concepto, se consideraba indestructible. De hecho, átomo significa en griego "no divisible". El conocimiento del tamaño y la naturaleza del átomo avanzó muy lentamente a lo largo de los siglos ya que la gente se limitaba a especular sobre él.
Con la llegada de la ciencia experimental en los siglos XVI y XVII (véase química), los avances en la teoría atómica se hicieron más rápidos. Los químicos se dieron cuenta muy pronto de que todos los líquidos, gases y sólidos pueden descomponerse en sus constituyentes últimos, o elementos. Por ejemplo, se descubrió que la sal se componía de dos elementos diferentes, el sodio y el cloro, ligados en una unión íntima conocida como compuesto químico. El aire, en cambio, resultó ser una mezcla de los gases nitrógeno y oxígeno.
Teoría de Dalton
John Dalton, profesor y químico británico, estaba fascinado por el rompecabezas de los elementos. A principios del siglo XIX estudió la forma en que los diversos elementos se combinan entre sí para formar compuestos químicos. Aunque muchos otros científicos, empezando por los antiguos griegos, habían afirmado ya que las unidades más pequeñas de una sustancia eran los átomos, se considera a Dalton como una de las figuras más significativas de la teoría atómica porque la convirtió en algo cuantitativo. Dalton mostró que los átomos se unían entre sí en proporciones definidas. Las investigaciones demostraron que los átomos suelen formar grupos llamados moléculas. Cada molécula de agua, por ejemplo, está formada por un único átomo de oxígeno (O) y dos átomos de hidrógeno (H) unidos por una fuerza eléctrica denominada enlace químico, por lo que el agua se simboliza como HOH o H2O. Véase Reacción química.
Todos los átomos de un determinado elemento tienen las mismas propiedades químicas. Por tanto, desde un punto de vista químico, el átomo es la entidad más pequeña que hay que considerar. Las propiedades químicas de los elementos son muy distintas entre sí; sus átomos se combinan de formas muy variadas para formar numerosísimos compuestos químicos diferentes. Algunos elementos, como los gases nobles helio y argón, son inertes; es decir, no reaccionan con otros elementos salvo en condiciones especiales. Al contrario que el oxígeno, cuyas moléculas son diatómicas (formadas por dos átomos), el helio y otros gases inertes son elementos monoatómicos, con un único átomo por molécula.
 
Ley de Avogadro
El estudio de los gases atrajo la atención del físico italiano Amedeo Avogadro, que en 1811 formuló una importante ley que lleva su nombre (véase ley de Avogadro). Esta ley afirma que dos volúmenes iguales de gases diferentes contienen el mismo número de moléculas si sus condiciones de temperatura y presión son las mismas. Si se dan esas condiciones, dos botellas idénticas, una llena de oxígeno y otra de helio, contendrán exactamente el mismo número de moléculas. Sin embargo, el número de átomos de oxígeno será dos veces mayor puesto que el oxígeno es diatómico.
Masa atómica
De la ley de Avogadro se desprende que las masas de un volumen patrón de diferentes gases (es decir, sus densidades) son proporcionales a la masa de cada molécula individual de gas. Si se toma el carbono como patrón y se le asigna al átomo de carbono un valor de 12,0000 unidades de masa atómica (u), resulta que el hidrógeno tiene una masa atómica de 1,0079u, el helio de 4,0026, el flúor de 18,9984 y el sodio de 22,9898. En ocasiones se habla de "peso atómico" aunque lo correcto es "masa atómica". La masa es una propiedad del cuerpo, mientras que el peso es la fuerza ejercida sobre el cuerpo a causa de la gravedad.
La observación de que muchas masas atómicas se aproximan a números enteros llevó al químico británico William Prout a sugerir, en 1816, que todos los elementos podrían estar compuestos por átomos de hidrógeno. No obstante, medidas posteriores de las masas atómicas demostraron que el cloro, por ejemplo, tiene una masa atómica de 35,453 (si se asigna al carbono el valor 12). El descubrimiento de estas masas atómicas fraccionarias pareció invalidar la hipótesis de Prout hasta un siglo después, cuando se descubrió que generalmente los átomos de un elemento dado no tienen todos la misma masa. Los átomos de un mismo elemento con diferente masa se conocen como isótopos. En el caso del cloro, existen dos isótopos en la naturaleza. Los átomos de uno de ellos (cloro 35) tienen una masa atómica cercana a 35, mientras que los del otro (cloro 37) tienen una masa atómica próxima a 37. Los experimentos demuestran que el cloro es una mezcla de tres partes de cloro 35 por cada parte de cloro 37. Esta proporción explica la masa atómica observada en el cloro.
Durante la primera mitad del siglo XX era corriente utilizar el oxígeno natural como patrón para expresar las masas atómicas, asignándole una masa atómica entera de 16. A principios de la década de 1960, las asociaciones internacionales de química y física acordaron un nuevo patrón y asignaron una masa atómica exactamente igual a 12 a un isótopo de carbono abundante, el carbono 12. Este nuevo patrón es especialmente apropiado porque el carbono 12 se emplea con frecuencia como patrón de referencia para calcular masas atómicas mediante el espectrómetro de masas. Además, la tabla de masas atómicas basada en el carbono 12 se aproxima bastante a la tabla antigua basada en el oxígeno natural.
 
La tabla periódica
A mediados del siglo XIX, varios químicos se dieron cuenta de que las similitudes en las propiedades químicas de diferentes elementos suponían una regularidad que podía ilustrarse ordenando los elementos de forma tabular o periódica. El químico ruso Dmitri Mendeléiev propuso una tabla de elementos llamada tabla periódica, en la que los elementos están ordenados en filas y columnas de forma que los elementos con propiedades químicas similares queden agrupados. Según este orden, a cada elemento se le asigna un número (número atómico) de acuerdo con su posición en la tabla, que va desde el 1 para el hidrógeno hasta el 92 para el uranio, que tiene el átomo más pesado de todos los elementos que existen de forma natural en nuestro planeta. Como en la época de Mendeléiev no se conocían todos los elementos, se dejaron espacios en blanco en la tabla periódica correspondientes a elementos que faltaban. Las posteriores investigaciones, facilitadas por el orden que los elementos conocidos ocupaban en la tabla, llevaron al descubrimiento de los elementos restantes. Los elementos con mayor número atómico tienen masas atómicas mayores, y la masa atómica de cada isótopo se aproxima a un número entero, de acuerdo con la hipótesis de Prout.
El tamaño del átomo

La curiosidad acerca del tamaño y masa del átomo atrajo a cientos de científicos durante un largo periodo en el que la falta de instrumentos y técnicas apropiadas impidió lograr respuestas satisfactorias. Posteriormente se diseñaron numerosos experimentos ingeniosos para determinar el tamaño y peso de los diferentes átomos. El átomo más ligero, el de hidrógeno, tiene un diámetro de aproximadamente 10-10 m (0,0000000001 m) y una masa alrededor de 1,7 × 10-27 kg. (la fracción de un kilogramo representada por 17 precedido de 26 ceros y una coma decimal). Un átomo es tan pequeño que una sola gota de agua contiene más de mil trillones de átomos.
Radiactividad
Una serie de descubrimientos importantes realizados hacia finales del siglo XIX dejó claro que el átomo no era una partícula sólida de materia que no pudiera ser dividida en partes más pequeñas. En 1895, el científico alemán Wilhelm Conrad Roentgen anunció el descubrimiento de los rayos X, que pueden atravesar láminas finas de plomo. En 1897, el físico inglés J. J. Thomson descubrió el electrón, una partícula con una masa muy inferior al de cualquier átomo. Y, en 1896, el físico francés Antoine Henri Becquerel comprobó que determinadas sustancias, como las sales de uranio, generaban rayos penetrantes de origen misterioso. El matrimonio de científicos franceses formado por Marie y Pierre Curie aportó una contribución adicional a la comprensión de esas sustancias "radiactivas" (véase radio). Como resultado de las investigaciones del físico británico Ernest Rutherford y sus coetáneos, se demostró que el uranio y algunos otros elementos pesados, como el torio o el radio, emiten tres clases diferentes de radiación, inicialmente denominadas rayos alfa (a), beta (b) y gamma (g). Las dos primeras, que según se averiguó están formadas por partículas eléctricamente cargadas, se denominan actualmente partículas alfa y beta. Posteriormente se comprobó que las partículas alfa son núcleos de helio (ver más abajo) y las partículas beta son electrones. Estaba claro que el átomo se componía de partes más pequeñas. Los rayos gamma fueron finalmente identificados como ondas electromagnéticas, similares a los rayos X pero con menor longitud de onda (véase radiación electromagnética).
 
El átomo nuclear de Rutherford
El descubrimiento de la naturaleza de las emisiones radiactivas permitió a los físicos profundizar en el átomo, que según se vio consistía principalmente en espacio vacío. En el centro de ese espacio se encuentra el núcleo, que sólo mide, aproximadamente, una diezmilésima parte del diámetro del átomo. Rutherford dedujo que la masa del átomo está concentrada en su núcleo. También postuló que los electrones, de los que ya se sabía que formaban parte del átomo, viajaban en órbitas alrededor del núcleo. El núcleo tiene una carga eléctrica positiva; los electrones tienen carga negativa. La suma de las cargas de los electrones es igual en magnitud a la carga del núcleo, por lo que el estado eléctrico normal del átomo es neutro.
 
El átomo de Bohr
Para explicar la estructura del átomo, el físico danés Niels Bohr desarrolló en 1913 una hipótesis conocida como teoría atómica de Bohr (véase teoría cuántica). Bohr supuso que los electrones están dispuestos en capas definidas, o niveles cuánticos, a una distancia considerable del núcleo. La disposición de los electrones se denomina configuración electrónica. El número de electrones es igual al número atómico del átomo: el hidrógeno tiene un único electrón orbital, el helio dos y el uranio 92. Las capas electrónicas se superponen de forma regular hasta un máximo de siete, y cada una de ellas puede albergar un determinado número de electrones. La primera capa está completa cuando contiene dos electrones, en la segunda caben un máximo de ocho, y las capas sucesivas pueden contener cantidades cada vez mayores. Ningún átomo existente en la naturaleza tiene la séptima capa llena. Los "últimos" electrones, los más externos o los últimos en añadirse a la estructura del átomo, determinan el comportamiento químico del átomo.
Todos los gases inertes o nobles (helio, neón, argón, criptón, xenón y radón) tienen llena su capa electrónica externa. No se combinan químicamente en la naturaleza, aunque los tres gases nobles más pesados (criptón, xenón y radón) pueden formar compuestos químicos en el laboratorio. Por otra parte, las capas exteriores de los elementos como litio, sodio o potasio sólo contienen un electrón. Estos elementos se combinan con facilidad con otros elementos (transfiriéndoles su electrón más externo) para formar numerosos compuestos químicos. De forma equivalente, a los elementos como el flúor, el cloro o el bromo sólo les falta un electrón para que su capa exterior esté completa. También se combinan con facilidad con otros elementos de los que obtienen electrones.
Las capas atómicas no se llenan necesariamente de electrones de forma consecutiva. Los electrones de los primeros 18 elementos de la tabla periódica se añaden de forma regular, llenando cada capa al máximo antes de iniciar una nueva capa. A partir del elemento decimonoveno, el electrón más externo comienza una nueva capa antes de que se llene por completo la capa anterior. No obstante, se sigue manteniendo una regularidad, ya que los electrones llenan las capas sucesivas con una alternancia que se repite. El resultado es la repetición regular de las propiedades químicas de los átomos, que se corresponde con el orden de los elementos en la tabla periódica.
Resulta cómodo visualizar los electrones que se desplazan alrededor del núcleo como si fueran planetas que giran en torno al Sol. No obstante, esta visión es mucho más sencilla que la que se mantiene actualmente. Ahora se sabe que es imposible determinar exactamente la posición de un electrón en el átomo sin perturbar su posición. Esta incertidumbre se expresa atribuyendo al átomo una forma de nube en la que la posición de un electrón se define según la probabilidad de encontrarlo a una distancia determinada del núcleo. Esta visión del átomo como "nube de probabilidad" ha sustituido al modelo de sistema solar.
 
Líneas espectrales
Uno de los grandes éxitos de la física teórica fue la explicación de las líneas espectrales características de numerosos elementos (véase Espectroscopia: Líneas espectrales). Los átomos excitados por energía suministrada por una fuente externa emiten luz de frecuencias bien definidas. Si, por ejemplo, se mantiene gas hidrógeno a baja presión en un tubo de vidrio y se hace pasar una corriente eléctrica a través de él, desprende luz visible de color rojizo. El examen cuidadoso de esa luz mediante un espectroscopio muestra un espectro de líneas, una serie de líneas de luz separadas por intervalos regulares. Cada línea es la imagen de la ranura del espectroscopio que se forma en un color determinado. Cada línea tiene una longitud de onda definida y una determinada energía asociada. La teoría de Bohr permite a los físicos calcular esas longitudes de onda de forma sencilla. Se supone que los electrones pueden moverse en órbitas estables dentro del átomo. Mientras un electrón permanece en una órbita a distancia constante del núcleo, el átomo no irradia energía. Cuando el átomo es excitado, el electrón salta a una órbita de mayor energía, a más distancia del núcleo. Cuando vuelve a caer a una órbita más cercana al núcleo, emite una cantidad discreta de energía que corresponde a luz de una determinada longitud de onda. El electrón puede volver a su órbita original en varios pasos intermedios, ocupando órbitas que no estén completamente llenas. Cada línea observada representa una determinada transición electrónica entre órbitas de mayor y menor energía.
En muchos de los elementos más pesados, cuando un átomo está tan excitado que resultan afectados los electrones internos cercanos al núcleo, se emite radiación penetrante (rayos X). Estas transiciones electrónicas implican cantidades de energía muy grandes.
El núcleo atómico
En 1919, Rutherford expuso gas nitrógeno a una fuente radiactiva que emitía partículas alfa. Algunas de estas partículas colisionaban con los núcleos de los átomos de nitrógeno. Como resultado de estas colisiones, los átomos de nitrógeno se transformaban en átomos de oxígeno. El núcleo de cada átomo transformado emitía una partícula positivamente cargada. Se comprobó que esas partículas eran idénticas a los núcleos de átomos de hidrógeno. Se las denominó protones. Las investigaciones posteriores demostraron que los protones forman parte de los núcleos de todos los elementos.
No se conocieron más datos sobre la estructura del núcleo hasta 1932, cuando el físico británico James Chadwick descubrió en el núcleo otra partícula, el neutrón, que tiene casi exactamente la misma masa que el protón pero carece de carga eléctrica. Entonces se vio que el núcleo está formado por protones y neutrones. En cualquier átomo dado, el número de protones es igual al número de electrones y, por tanto, al número atómico del átomo. Los isótopos son átomos del mismo elemento (es decir, con el mismo número de protones) que tienen diferente número de neutrones. En el caso del cloro, uno de los isótopos se identifica con el símbolo 35Cl, y su pariente más pesado con 37Cl. Los superíndices identifican la masa atómica del isótopo, y son iguales al número total de neutrones y protones en el núcleo del átomo. A veces se da el número atómico como subíndice, como por ejemplo
 
Los núcleos menos estables son los que contienen un número impar de neutrones y un número impar de protones; todos menos cuatro de los isótopos correspondientes a núcleos de este tipo son radiactivos. La presencia de un gran exceso de neutrones en relación con los protones también reduce la estabilidad del núcleo; esto sucede con los núcleos de todos los isótopos de los elementos situados por encima del bismuto en la tabla periódica, y todos ellos son radiactivos. La mayor parte de los núcleos estables conocidos contiene un número par de protones y un número par de neutrones.
Radiactividad artificial
Los experimentos llevados a cabo por los físicos franceses Frédéric e Irène Joliot-Curie a principios de la década de 1930 demostraron que los átomos estables de un elemento pueden hacerse artificialmente radiactivos bombardeándolos adecuadamente con partículas nucleares o rayos. Estos isótopos radiactivos (radioisótopos) se producen como resultado de una reacción o transformación nuclear. En dichas reacciones, los algo más de 270 isótopos que se encuentran en la naturaleza sirven como objetivo de proyectiles nucleares. El desarrollo de "rompeátomos", o aceleradores, que proporcionan una energía elevada para lanzar estas partículas-proyectil ha permitido observar miles de reacciones nucleares.
Reacciones nucleares
En 1932, dos científicos británicos, John D. Cockcroft y Ernest T. S. Walton, fueron los primeros en usar partículas artificialmente aceleradas para desintegrar un núcleo atómico. Produjeron un haz de protones acelerados hasta altas velocidades mediante un dispositivo de alto voltaje llamado multiplicador de tensión. A continuación se emplearon esas partículas para bombardear un núcleo de litio. En esa reacción nuclear, el litio 7 (7Li) se escinde en dos fragmentos, que son núcleos de átomos de helio. La reacción se expresa mediante la ecuación
Aceleradores de partículas
Alrededor de 1930, el físico estadounidense Ernest O. Lawrence desarrolló un acelerador de partículas llamado ciclotrón. Esta máquina genera fuerzas eléctricas de atracción y repulsión que aceleran las partículas atómicas confinadas en una órbita circular mediante la fuerza electromagnética de un gran imán. Las partículas se mueven hacia fuera en espiral bajo la influencia de estas fuerzas eléctricas y magnéticas, y alcanzan velocidades extremadamente elevadas. La aceleración se produce en el vacío para que las partículas no colisionen con moléculas de aire. A partir del ciclotrón se desarrollaron otros aceleradores capaces de proporcionar energías cada vez más altas a las partículas. Como los aparatos necesarios para generar fuerzas magnéticas intensas son colosales, los aceleradores de alta energía suponen instalaciones enormes y costosas.
 
Fuerzas nucleares
La teoría nuclear moderna se basa en la idea de que los núcleos están formados por neutrones y protones que se mantienen unidos por fuerzas "nucleares" extremadamente poderosas. Para estudiar estas fuerzas nucleares, los físicos tienen que perturbar los neutrones y protones bombardeándolos con partículas extremadamente energéticas. Estos bombardeos han revelado más de 200 partículas elementales, minúsculos trozos de materia, la mayoría de los cuales, sólo existe durante un tiempo mucho menor a una cienmillonésima de segundo.
Este mundo subnuclear salió a la luz por primera vez en los rayos cósmicos. Estos rayos están constituidos por partículas altamente energéticas que bombardean constantemente la Tierra desde el espacio exterior; muchas de ellas atraviesan la atmósfera y llegan incluso a penetrar en la corteza terrestre. La radiación cósmica incluye muchos tipos de partículas, de las que algunas tienen energías que superan con mucho a las logradas en los aceleradores de partículas. Cuando estas partículas de alta energía chocan contra los núcleos, pueden crearse nuevas partículas. Entre las primeras en ser observadas estuvieron los muones (detectados en 1937). El muón es esencialmente un electrón pesado, y puede tener carga positiva o negativa. Es aproximadamente 200 veces más pesado que un electrón. La existencia del pión fue profetizada en 1935 por el físico japonés Yukawa Hideki, y fue descubierto en 1947. Según la teoría más aceptada, las partículas nucleares se mantienen unidas por "fuerzas de intercambio" en las que se intercambian constantemente piones comunes a los neutrones y los protones. La unión de los protones y los neutrones a través de los piones es similar a la unión en una molécula de dos átomos que comparten o intercambian un par de electrones común. El pión, aproximadamente 270 veces más pesado que el electrón, puede tener carga positiva, negativa o nula.
Partículas elementales
Durante mucho tiempo, los físicos han buscado una teoría para poner orden en el confuso mundo de las partículas. En la actualidad, las partículas se agrupan según la fuerza que domina sus interacciones. Todas las partículas se ven afectadas por la gravedad, que sin embargo es extremadamente débil a escala subatómica. Los hadrones están sometidos a la fuerza nuclear fuerte y al electromagnetismo; además del neutrón y el protón, incluyen los hiperones y mesones. Los leptones "sienten" las fuerzas electromagnética y nuclear débil; incluyen el tau, el muón, el electrón y los neutrinos. Los bosones (una especie de partículas asociadas con las interacciones) incluyen el fotón, que "transmite" la fuerza electromagnética, las partículas W y Z, portadoras de la fuerza nuclear débil, y el hipotético portador de la gravitación (gravitón). La fuerza nuclear débil aparece en procesos radiactivos o de desintegración de partículas, como la desintegración alfa (la liberación de un núcleo de helio por parte de un núcleo atómico inestable). Además, los estudios con aceleradores han determinado que por cada partícula existe una antipartícula con la misma masa, cuya carga u otra propiedad electromagnética tiene signo opuesto a la de la partícula correspondiente. Véase Antimateria.
En 1963, los físicos estadounidenses Murray Gell-Mann y George Zweig propusieron la teoría de que los hadrones son en realidad combinaciones de otras partículas elementales llamadas quarks, cuyas interacciones son transmitidas por gluones, una especie de partículas. Esta es la teoría subyacente de las investigaciones actuales, y ha servido para predecir la existencia de otras partículas.
 
Liberación de la energía nuclear
En 1905, Albert Einstein desarrolló la ecuación que relaciona la masa y la energía, E = mc2, como parte de su teoría de la relatividad especial. Dicha ecuación afirma que una masa determinada (m) está asociada con una cantidad de energía (E) igual a la masa multiplicada por el cuadrado de la velocidad de la luz ©. Una cantidad muy pequeña de masa equivale a una cantidad enorme de energía. Como más del 99% de la masa del átomo reside en su núcleo, cualquier liberación de grandes cantidades de energía atómica debe provenir del núcleo.
Hay dos procesos nucleares que tienen gran importancia práctica porque proporcionan cantidades enormes de energía: la fisión nuclear -la escisión de un núcleo pesado en núcleos más ligeros- y la fusión termonuclear -la unión de dos núcleos ligeros (a temperaturas extremadamente altas) para formar un núcleo más pesado. El físico estadounidense de origen italiano Enrico Fermi logró realizar la fisión en 1934, pero la reacción no se reconoció como tal hasta 1939, cuando los científicos alemanes Otto Hahn y Fritz Strassmann anunciaron que habían fisionado núcleos de uranio bombardeándolos con neutrones. Esta reacción libera a su vez neutrones, con lo que puede causar una reacción en cadena con otros núcleos. En la explosión de una bomba atómica se produce una reacción en cadena incontrolada. Las reacciones controladas, por otra parte, pueden utilizarse para producir calor y generar así energía eléctrica, como ocurre en los reactores nucleares.
La fusión termonuclear se produce en las estrellas, entre ellas el Sol, y constituye su fuente de calor y luz. La fusión incontrolada se da en la explosión de una bomba de hidrógeno. En la actualidad, se está intentando desarrollar un sistema de fusión controlada. Véase Energía nuclear; Armas nucleares.